Residual stresses within stainless steel pipe welds may impact both component inspections and in-service cracking. Various investigators have examined piping residual stresses in large diameter piping using both finite element modeling and experimental techniques, but limited information is available for small diameter piping. This investigation uses both experimental methods and analytical modeling to evaluate the impact of welding on the residual stresses along the inner diameter (ID) of two small diameter pipe specimens.
Results of the investigation showed that tensile axial residual stresses were observed in the heat affected zone (HAZ) along the ID of the thin-wall pipe specimen with distinct regions of tensile and compressive axial stress which correlate well with the location where the last weld segments of the final weld pass were deposited. Higher stresses were also observed in the HAZ on the side where the final weld pass was deposited. By contrast, testing of the thick-wall pipe specimen showed significantly lower levels of tensile stresses along the pipe ID with the higher stress regions being biased toward the pipe outer diameter (OD).