A primary barrier to the widespread use of gaseous hydrogen as an energy carrier is the creation of a hydrogen-specific transportation network. Research performed at the National Institute of Standards and Technology, in conjunction with the U.S. Department of transportation and ASME committee B31.12 (Hydrogen Piping and Pipelines), has resulted in a phenomenological model to predict fatigue crack growth of API pipeline steels cyclically loaded in high-pressure gaseous hydrogen. The full model predicts hydrogen-assisted (HA) fatigue crack growth (FCG) as a function of applied load and hydrogen pressure. Implementation of the model into an engineering format is crucial for the realization of safe, cost-effective pipelines for the nation’s hydrogen infrastructure. Working closely with ASME B31.12, two simplified iterations of the model have been created for an engineering-based code implementation. The engineering-based iterations are detailed here and the benefits of both are discussed. A case study is then presented detailing the use of both versions. The work is concluded with a discussion of the potential impact that model implementation would have upon future hydrogen pipeline installations.

This content is only available via PDF.
You do not currently have access to this content.