Ensuring mechanical properties of carbon and low alloy steels after deformation is of major concern since the building process of heavy (i.e. thick-walled) pressure vessels may be directly impacted. Indeed, thick plates encounter forming and welding operations that may modify as-delivered properties. From both technical and economical points of view, cold forming is usually preferred. This technique is nowadays widespread and new rolling equipments display sufficient power to handle plates up to at least 250mm thick.

Current limitations are now mainly related to maximum admissible strain in materials and regulation rules resulting from construction codes. The ASME Boilers and Pressure Vessels Construction Code on the American side and the EN 13445 Unfired Pressure Vessels Construction Code on the European side, both allow the use of as-strained material up to maximum 5% plastic (i.e. permanent) strain without any subsequent heat treatment operation.

Above 5% plastic deformation, on one hand the European code requires a full quality treatment (meaning high temperature austenitization treatment, then cooling in air (normalizing – N) or in accelerated conditions (quenching – Q or accelerated cooling – NAC), followed by a Tempering treatment T) and on the other hand the ASME code only requires Tempering that can even be carried out using the mandatory Post Weld Heat Treatment (PWHT) needed by welded zones.

However, it is of high importance to note that thick vessels are always submitted to a final PWHT to insure sufficient toughness in welded zones. This final PWHT is performed whatever the deformation obtained during plate rolling. In practice, there are no thick vessels made out of plates in as-strained conditions.

Avoiding a full quality treatment as demanded per EN 13445 rules is of major interest for fabricators as it allows to decrease the delivery time, the risk of appearance of problematic issues (uncontrolled deformations of the vessel during high temperature treatments…) and significantly reduces the overall fabrication costs.

This paper focuses on the effect of strain on conventional mechanical properties for steel grades widely used for the fabrication of heavy pressure equipments (i.e. tensile properties, hardness, Charpy V toughness) for different strain levels. In particular, it points out and discusses PWHT effects on properties of various pre-strained materials, showing that there is no need for full quality heat treatment.

This content is only available via PDF.
You do not currently have access to this content.