The 1D fully coupled Fluid-Structure Interaction (FSI) model can adequately describe the water hammer effect on the fluid, and the structural behaviour of the pipe. This paper attempts to increase the capability of using an exact solution of the 1D FSI problem applied to a straight pipe with a valve. The work builds upon a simple recursion algorithm to obtain exact solutions. This paper describes the attempts to parallelize the time-consuming algorithm and presents an optimization case study. The algorithm has been parallelized using a Master-Slave MPI model for scalability. The applicability of this all has been explored by an optimization case study, which seeks the optimal damping coefficient of a dashpot connected to the valve to reduce the structural stresses in the pipe wall and the pressure in the fluid. Thus, an external damper is used to mitigate internal fluid transients.

This content is only available via PDF.
You do not currently have access to this content.