This paper presents a multi-dimensional numerical analysis of the transient thermal-hydraulic response of a steam generator secondary side to a double-ended guillotine break of the main steam line attached to the steam generator at a pressurized water reactor plant. A simplified analysis model is designed to include both the steam generator upper space where steam occupies and a part of the main steam line between the steam generator outlet nozzle and the pipe break location upstream of the main steam isolation valve. The transient steam flow through the analysis model is simulated using the shear stress transport turbulence model. The steam is treated as a real gas. To model the steam generation by heat transfer from the primary coolant to the secondary side coolant for a short period during the blow down process following the main steam line break accident, a constant amount of steam is assumed to be generated from the bottom of the steam generator upper space part. Using the numerical approach mentioned above, calculations have been performed for the analysis model having the same physical dimensions of the main steam line pipe and initial operational conditions as those for an actual operating plant. The calculation results have been discussed in detail to investigate their physical meanings and validity. The results demonstrate that the present CFD model is applicable for simulating the transient thermal-hydraulic responses in the event of the MSLB accident including the blowdown-induced dynamic pressure disturbance in the SG. In addition, it has been found that the dynamic hydraulic loads acting on the SG tubes can be increased by 2 to 8 times those loads during the normal reactor operation. This implies the need to re-assess the potential for single or multiple SG tube ruptures due to fluidelastic instability for ensuring the reactor safety.
Skip Nav Destination
ASME 2014 Pressure Vessels and Piping Conference
July 20–24, 2014
Anaheim, California, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-4601-8
PROCEEDINGS PAPER
Transient Thermal-Hydraulic Responses of the Nuclear Steam Generator Secondary Side to a Main Steam Line Break
Jong Chull Jo,
Jong Chull Jo
Korea Institute of Nuclear Safety, Daejon, Korea
Search for other works by this author on:
Frederick J. Moody
Frederick J. Moody
Consultant, Turlock, CA
Search for other works by this author on:
Jong Chull Jo
Korea Institute of Nuclear Safety, Daejon, Korea
Frederick J. Moody
Consultant, Turlock, CA
Paper No:
PVP2014-28134, V004T04A095; 9 pages
Published Online:
November 18, 2014
Citation
Jo, JC, & Moody, FJ. "Transient Thermal-Hydraulic Responses of the Nuclear Steam Generator Secondary Side to a Main Steam Line Break." Proceedings of the ASME 2014 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction. Anaheim, California, USA. July 20–24, 2014. V004T04A095. ASME. https://doi.org/10.1115/PVP2014-28134
Download citation file:
21
Views
Related Proceedings Papers
Related Articles
Computational Fluid Dynamics Analysis and Structural Safety Assessment of a Mitigation Device to Minimize Consequence of a Containment Bypass Nuclear Accident
J. Pressure Vessel Technol (April,2021)
CFD Tool for Assessment of the Reactor Pressure Vessel Integrity in Pressure Thermal Shock Conditions: Influence of Turbulence Model and Mesh Refinement on the Vessel Thermal Loading During PTS Transient
J. Pressure Vessel Technol (June,2011)
Numerical Analysis of Unsteady Conjugate Heat Transfer and Thermal Stress for a Curved Piping System Subjected to Thermal Stratification
J. Pressure Vessel Technol (November,2003)
Related Chapters
Development of Nuclear Boiler and Pressure Vessels in Taiwan
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 3, Third Edition
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)