The flow-excited acoustic resonance of single and multiple cylinders in cross-flow is investigated experimentally. The effect of the cylinder(s) proximity to the acoustic particle velocity nodes of the first three acoustic cross-modes is presented. During the experiments, the acoustic cross-modes of the duct housing the cylinders are self-excited. For the case of a single cylinder, it is observed that although the cylinder’s location doesn’t significantly affect the vortex shedding process, it affects the mechanism of the flow-excited acoustic resonance and the levels of the generated acoustic pressure. When the cylinder is shifted away from the acoustic particle velocity anti-node of a specific acoustic cross-mode, a combination of cross-modes is excited with intensities that seem to be proportional to the ratio of the acoustic particle velocities of these modes at the cylinder’s location. For the case of two and three isolated cylinders positioned simultaneously side-by-side in the duct, it is observed that when the cylinders are positioned at different acoustic particle velocity anti-nodes of different cross-modes, the intensities of the excited acoustic resonance of these cross-modes are amplified compared to those with single cylinder. Nevertheless, when one cylinder is positioned at the acoustic particle velocity anti-node for a specific cross-mode and another cylinder is positioned at its acoustic particle velocity node, i.e. a cylinder that should excite the resonance and another one that should supress it, respectively; the excitation always takes over and the resonance occurs. Moreover, as the cylinder moves closer to the duct’s wall, the Strouhal number value decreases due to the interference between the wake of the cylinder and the wall. Therefore, the acoustic resonance for this case occurs at slightly higher flow velocities.
Skip Nav Destination
ASME 2014 Pressure Vessels and Piping Conference
July 20–24, 2014
Anaheim, California, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-4601-8
PROCEEDINGS PAPER
On the Flow-Excited Acoustic Resonance of Isolated Cylinder(s) in Cross-Flow
Nadim Arafa,
Nadim Arafa
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Atef Mohany,
Atef Mohany
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Marwan Hassan
Marwan Hassan
University of Guelph, Guelph, ON, Canada
Search for other works by this author on:
Nadim Arafa
University of Ontario Institute of Technology, Oshawa, ON, Canada
Atef Mohany
University of Ontario Institute of Technology, Oshawa, ON, Canada
Marwan Hassan
University of Guelph, Guelph, ON, Canada
Paper No:
PVP2014-28784, V004T04A068; 9 pages
Published Online:
November 18, 2014
Citation
Arafa, N, Mohany, A, & Hassan, M. "On the Flow-Excited Acoustic Resonance of Isolated Cylinder(s) in Cross-Flow." Proceedings of the ASME 2014 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction. Anaheim, California, USA. July 20–24, 2014. V004T04A068. ASME. https://doi.org/10.1115/PVP2014-28784
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Near-Wake Characteristics and Acoustic Resonance Excitation of Crimped Spirally Finned Cylinders in Cross-Flow
J. Pressure Vessel Technol (October,2018)
Parametric Investigation of the Flow-Sound Interaction Mechanism for Single Cylinders in Cross-Flow
J. Pressure Vessel Technol (April,2021)
Flow-Excited Acoustic Resonance of Isolated Cylinders in Cross-Flow
J. Pressure Vessel Technol (February,2016)
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Random Turbulence Excitation in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Fluidelastic Instability of Tube Bundles in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment