Engineering Critical Assessments (ECAs) are routinely used to provide defect acceptance criteria for pipelines girth welds. The Failure Assessment Diagram (FAD) concept is the most widely used methodology for elastic-plastic fracture mechanics analysis of structural components and adopted by standards/documents including BS7910 [1], API579-1/ASME FFS-1 [2], R6 [3]. It is defined by two criterion Kr and Lr which describe the interaction between brittle fracture and fully ductile rupture: Kr measures the proximity to brittle fracture whereas Lr reflects the closeness to plastic collapse.

The BS7910 FAD level 2B is the most employed for assessment of flaws under mechanical strain lower than 0.4%, the FAD associated is material-specific and it based on single toughness value obtained from CTOD test, the latter-on gives no information about the tearing initiation.

The objective of this paper is to propose an approach for determination of the critical fracture toughness (associated to zero-tearing: JΔa=0). This approach is based on the comparison between the load-CMOD curve provided from a fracture toughness test to the one obtained by Finite Element Analysis (FEA). The goals is to propose a conservative guidance on how to identify a remote strain level below which it may be considered guaranteed the integrity of the remaining ligament.

This content is only available via PDF.
You do not currently have access to this content.