Next generation reactors which are subjected to elevated temperatures must be designed to account for inelastic deformation along with elastic one. In order to simplify design analysis of perforated portions, conventionally axisymmetric models with equivalent elastic materials are employed. To extend to inelastic analysis, a method of Effective Stress Ratio (ESR) has been studied in recent years. Previous studies have shown that perforated plates have their own ESR and it is a function of geometry and is independent from their materials.

In this study the only geometry dependence and physical meaning of ESR were clarified. ESR results were compared with Reference Stress Method (RSM) results for unit-ligaments with various ligament efficiencies. It was revealed that RSM results coincide with ESR. First meaning of ESR is stress ratio between solid plate and perforated plate at the same reference stresses. Second meaning of this ratio is how plasticity properties of equivalent solid plate have to be changed to give the same steady state deformation rate at the same mean boundary stress. Moreover, to clarify stress redistribution control mechanism at different ligament efficiencies, simple models were developed and an estimation method based on simple models was proposed for engineering use.

This content is only available via PDF.
You do not currently have access to this content.