Analytical evaluation procedures for determining the acceptability of flaws detected during in-service inspection of nuclear power plant components are provided in Section XI of the ASME Boiler and Pressure Vessel Code. Linear elastic fracture mechanics based evaluation procedures in ASME Section XI require calculation of the stress intensity factor. In Article A-3000 of Appendix A of the 2013 Edition of ASME Section XI, the calculation of stress intensity factor for a surface crack is based on characterization of stress field with a cubic equation and use of stress intensity factor influence coefficients. The influence coefficients are only provided for a flat plate geometry.

The ASME Section XI Working Group on Flaw Evaluation is in the process of rewriting Article A-3000 of Appendix A. Major updates include the implementation of an alternate method for calculation of the stress intensity factor for a surface flaw that makes explicit use of the Universal Weight Function Method and does not require a polynomial fit to the actual stress distribution, and the inclusion of stress intensity factor influence coefficients for the cylinder geometry. Tabular data of influence coefficients for the cylinder geometry are available in API 579-1/ASME FFS-1 2007. Effort has been made to develop closed-form relations for the stress intensity factor influence coefficients for the cylinder geometry based on API data. With the inclusion of the explicit weight function approach and the closed-form relations for influence coefficients, the procedures of Appendix A for the calculation of stress intensity factors can be used more efficiently. The development of closed-form relations for stress intensity factor influence coefficients for axial ID surface flaws in cylinders is described in this paper.

This content is only available via PDF.
You do not currently have access to this content.