The steam supply piping connected to the high pressure (HP) turbine of APR1400 (Korea’s advanced power plant 1400 MW-class) is a typical example of multi-supported piping system, and it is routed from the Containment building to the Turbine building via the Main Steam Isolation Valve House in the Auxiliary building. In the seismic analysis of this piping system, using the Enveloped Response Spectrum (ERS) method, a commonly used methodology for seismic analysis of nuclear power plant piping in industry circles, generates overly conservative analysis results. Therefore, Time History Method (THM) which applies excitation characteristic of each support attached to individual building was used to eliminate unnecessary conservatism. However, it was noticed that the Time History Method requires considerable amount of labor and time in generating combined time history equivalent to the spectrum applied for each support although it is regarded as the most exact and realistic method for seismic analysis. The nuclear industry has been making lots of efforts in finding out the mathematic logicality and practical applicability to resolve this issue. This paper deals with parametric research on combination effects of responses between support groups, damping effects, and modal combination method with close modes in applying the Independent Support Motion (ISM) method to the analysis model of the steam supply piping connected to the high pressure turbine of APR1400. Quantitative assessment and comparison with the analysis results of the ERS method and THM were also carried out. As a result, it is shown that the analysis results of the ISM method together with the SRSS combination between support groups, 4% damping with ±15% spectrum peak broadening and grouping of modal combination are remarkably similar to those of THM.

This content is only available via PDF.
You do not currently have access to this content.