After the Code Case N-640 was issued in 1999, the fracture toughness curve of reactor pressure vessel materials in ASME Section XI-Appendix G was amended to the KIC curve. In Taiwan, the present pressure-temperature limit curves of normal reactor startup (heat-up) and shut-down (cool-down) for the reactor pressure vessel is still calculated per KIA curve in 1998 or earlier editions. In this paper, the failure risks of a Taiwan domestic reactor pressure vessel under various pressure-temperature limit operations are analyzed. First, the pressure-temperature limit curves of the Taiwan domestic reactor pressure vessel based on KIA and KIC curves, and various levels of embrittlement, are calculated. Then, the ORNL’s probabilistic fracture mechanics code, FAVOR, and the PNNL’s flaw model are utilized to assess the failure probabilities of the reactor pressure vessel under such pressure-temperature limit transients. Further, the deterministic analyses of FAVOR code are also conducted. It is found that under the pressure-temperature limit transients based on KIC curves, the reactor pressure vessel presents higher failure probabilities, but are all below the allowable risk. The present results indicate that using the KIC curve the pressure-temperature limits can either increase the operational margin or still maintains the sufficient stability of the analyzed reactor pressure vessel.

This content is only available via PDF.
You do not currently have access to this content.