Stress corrosion cracking (SCC) have been observed in reactor coolant pressure boundary piping system at nuclear power plants. When an SCC is found, the structural integrity of piping should be assessed according to a fitness-for-service rule. However, the rule stipulates the assessment procedures for crack growth and failure only for a simple structure such as cylindrical or plate-wise structure. At the present, the methodology even of an SCC growth evaluation for a geometrically complicated piping such as saddle-shaped weld joints has not been established yet. This may be because analyses on the weld residual stress distribution which affects the SCC growth behavior around such portion are difficult to conduct. In this study, we established a finite element analysis model for a saddle-shaped weld joint of pipes. The residual stress distributions produced by the tungsten inert gas (TIG) welding were calculated based on thermal-elastic-plastic analysis with moving and simultaneous heat source models. Analysis results showed complicated weld residual stress distributions, i.e., residual stresses in both hoop and radial directions were tensile at the inner surface near the nozzle corner in branching pipe. SCC growth simulation based on S-version finite element method (S-FEM) using the weld residual stress distributions in saddle-shaped weld joint was also performed. We confirmed an applicability and the accuracy of S-FEM to saddle-shaped weld joint.

This content is only available via PDF.
You do not currently have access to this content.