The present paper provides the enhanced estimation of plastic J-integral and crack opening displacement (COD) for circumferential transition crack from surface to through-wall crack in cylinder based on detailed finite element analysis. The effects of circumferential transition crack on plastic J-integral and crack opening displacement have been systematically investigated for practical ranges of cylinder geometries and materials of interest. Then, the plastic influence functions (h1, h2) employed in the GE/EPRI method have been proposed to quantify those effects on plastic J-integral and COD. Furthermore, the J-integral and COD estimations based on the reference stress method using optimized reference load have also been introduced for circumferential non-idealized TWC in cylinder. Then, in order to gain the confidence in the proposed methods, the results from those proposed estimates were compared with elastic-plastic FE results by using actual stress-strain data and Ramberg-Osgood fit constants for TP 316 stainless steel. The present results can be expected to apply on various structure integrity assessments and to accurate plastic J-integral and COD estimation for circumferential non-idealized TWC in cylinder.

This content is only available via PDF.
You do not currently have access to this content.