Flow-induced vibrations of steam generator tubes in nuclear power plants may result in wear damage at support locations. The steam generators in EPR power plants have a design life of 60 years; as wear is an identified ageing damage in steam generators, it is therefore important to collect experimental results on wear of tube and support due to dynamic interactions at EPR secondary side temperature. In this study, wear tests were performed between a steam generator tube (Alloy 690) and two flat opposite anti-vibration bars (AVB in 410s stainless steel) at different impact force levels. Tests were performed in pressurized water at 290°C in wear machines for long term repeated predominant impact motions. The worn surfaces were observed by SEM, the wear coefficients of tube and AVB were evaluated using the work rate approach. Significant scoring, due to the importance of sliding when impacts occur, was shown on wear scar patterns. There were greater wear volumes and depths on tubes than on AVBs, but dynamic forced conditions and rigid mounting of AVB in the rigs have prevailed for finally getting an upper bound of the wear rates. Alloy 690 for tubes and 410s for AVB remain a satisfactory material combination considering comparative wear results with other published data.

This content is only available via PDF.
You do not currently have access to this content.