In this paper, the phenomenon of self-sustained pressure oscillations due to the flow past a deep, circular, axisymmetric cavity is investigated. In many engineering applications, such as flows through open gate valves, there exists potential for coupling between the vortex shedding from the upstream edge of the cavity and a diametral mode of the acoustic pressure fluctuations. In the present study, the unsteady pressure was measured at several azimuthal locations at the bottom of the cavity walls, and the associated acoustic mode shapes were calculated numerically for the four representative cases of the internal cavity geometry, which involved a reference case with sharp, 90°edges as well as several modifications that involved chamfers of various length of the upstream and the downstream edges of the cavity. In addition, the flow velocity in the vicinity of the cavity opening in selected cases was measured using digital particle image velocimetry (PIV). The optical access to the highly confined internal flow was provided by implementing an endoscope attached to the camera. This global, quantitative imaging approach yielded patterns of velocity, streamlines and out-of-plane vorticity component. Instantaneous and time-averaged flow patterns provided insight into the mechanism of the flow tone generation. Among the considered cavity geometries, the configuration that corresponded to the most efficient noise suppression was identified.
Skip Nav Destination
ASME 2013 Pressure Vessels and Piping Conference
July 14–18, 2013
Paris, France
Conference Sponsors:
- Pressure Vessels and Piping Division
- Nondestructive Evaluation Engineering Division
ISBN:
978-0-7918-5568-3
PROCEEDINGS PAPER
Experimental Investigation of Flow-Acoustic Coupling in a Deep Axisymmetric Cavity Available to Purchase
Peter Oshkai,
Peter Oshkai
University of Victoria, Victoria, BC, Canada
Search for other works by this author on:
Oleksandr Barannyk
Oleksandr Barannyk
University of Victoria, Victoria, BC, Canada
Search for other works by this author on:
Peter Oshkai
University of Victoria, Victoria, BC, Canada
Oleksandr Barannyk
University of Victoria, Victoria, BC, Canada
Paper No:
PVP2013-97103, V004T04A024; 10 pages
Published Online:
January 17, 2014
Citation
Oshkai, P, & Barannyk, O. "Experimental Investigation of Flow-Acoustic Coupling in a Deep Axisymmetric Cavity." Proceedings of the ASME 2013 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction. Paris, France. July 14–18, 2013. V004T04A024. ASME. https://doi.org/10.1115/PVP2013-97103
Download citation file:
41
Views
Related Proceedings Papers
Related Articles
Investigation of Diametral Acoustic Modes in a Model of a Steam Control Gate Valve
J. Pressure Vessel Technol (December,2014)
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump
J. Turbomach (July,1997)
Sound Generation by a Centrifugal Pump at Blade Passing Frequency
J. Turbomach (October,1998)
Related Chapters
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Spice Model on High Frequency Vibration for CMUT Application
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis