In this paper authors propose a liquid inertia damper that has a screw shaped piston in order to have effect of a series inertia mass. The damper consists of a piston and a cylinder, a screw shaped piston. Water is filled in the cylinder. The peripheral gap of the screw can act as an orifice of a by-pass pipe, and an inertia force is produced by a liquid flow through the gap. In order to confirm the inertia force, a test damper is manufactured, and resisting force characteristics are measured. It is apparent from test results that the damper can have a sum of the inertia force and nonlinear damping force. The series inertia mass is depended on a relation between a diameter of the cylinder and a gap of the screw. To confirm the vibration reduction, harmonic frequency response of one-degree-of-freedom system with the liquid inertia damper is calculated. Finally, the effects of vibration suppression are confirmed numerically.

This content is only available via PDF.
You do not currently have access to this content.