Finite element analyses have been performed to investigate the effects of warm prestressing (WPS) of a pre-cracked PTS-D (Pressurized Thermal Shock Disk) specimen. Three basic types of WPS loading cycles were used in the analyses: LUCF (Load-Unload-Cool-Fracture) cycle; LCF (Load-Cool-Fracture) cycle; and LCTF (Load-Cool-Transient-Fracture) cycle. The analyses aimed to predict the fracture toughness enhancements due to WPS using different analysis methods and to make comparisons with the experimental work conducted by the Belgium SCK-CEN organisation under the European NESC VII project.
The finite element results were used to derive the enhanced fracture toughness by three different engineering methods: (1) Chell’s displacement superposition method; (2) the local stress matching method; and (3) Wallin’s empirical formula. The enhanced fracture toughness was evaluated at the deepest point of the semi-elliptical crack based on three different levels of as-received fracture toughness of 43.96, 65.94, and 86.23 MPam1/2, which correspond to probabilities of failure of 5%, 50% and 95%, respectively.
The predicted fracture loads were compared with the experimental fracture loads for the three WPS loadings cycles. The results show good agreement.