The focus of this study is to clarify a dependence of bonding strength of ceramic to metal joint on interface wedge angle in metal side. Each plate Si3N4-to-Cu or Ni joint with plane interface is produced by electric discharge machining. Geometrical shape at the edge of the interface is characterized by wedge angle defined as a configuration angle between free surface of each material and the interface. As the wedge angle of Si3N4 is right angle, the wedge angle of metal is set over from 30° to 180°. Each joint is bonded at high temperature by using thin braze metal under vacuum and slowly cooled. Tensile bonding strength of the joint is evaluated. Result shows that decrease of the wedge angle of metal side from right angle improves the bonding strength since it decreases the residual stress near edge of the interface on ceramic side. The highest bonding strength appears at the identical interface condition where fracture pattern changes. It appears that optimum edge angle for obtaining the highest bonding strength depends on bonding temperature and combination of bonded materials. This paper provides a useful geometrical interface shape to improve tensile bonding strength of ceramic to metal joint.

This content is only available via PDF.
You do not currently have access to this content.