Fatigue crack propagation forms a distinctive pattern which is observable on the fracture surfaces of materials. Purpose of this study is to analyze the fracture process of the materials received under cyclic distortion loading using scanning electron microscope. The test piece made of type 304 stainless steel with the hole of a different size is examined on the conditions of the high temperature fatigue and creep-fatigue. This study first takes a picture of the fracture with SEM, and measures the intervals of striation on fracture surfaces. Next, this study calculates the number of the crack propagation cycles and compares with the original experimental data defined by the load decrease condition or the crack length.
Consequently, there is not so much differences at striation intervals regardless of the size of the root notch radius in the present tests. However, the striation spacing in the creep fatigue test has grown about twice of striation intervals in the high temperature fatigue-test.