In the structural integrity assessment of structures containing defects, ductile tearing and plastic collapse are treated as competing failure mechanisms. The validity of fracture toughness measurements in test specimens is limited by the development of plasticity ahead of the crack tip. Compact Tension (CT) specimens are commonly used to characterise the ductile fracture toughness. Three sizes of CT specimens (thickness 25, 15 and 10mm) were tested using the unloading compliance technique and the J-Resistance curve characterised. Concurrently, the development of the plastic zone was monitored on the surface of specimens using digital image correlation. This enabled the plastic zone size to be correlated with the evolution of crack growth. It was found that in all specimens no crack growth occurred prior to plastic yielding of the un-cracked ligament on the specimen surface. Furthermore, a reduction in initiation and tearing toughness was observed with reduction in specimen size. The Rice and Tracey local approach was developed to predict the specimen size effect.

This content is only available via PDF.
You do not currently have access to this content.