Elasto-Plastic Fracture Mechanics (EPFM) is a useful tool for analyzing the structural integrity of components. However, EPFM has originally been developed for homogeneous materials and there are some concerns when it is applied to inhomogeneous materials. In the case of welds, the material fracture toughness and the applied fracture mechanics parameter on the structural member (J-integral, CTOD) should be adequately estimated. Furthermore, the mechanic mismatch influences on the local constraint may increase the risk of unstable failure. Hence, to study the effects of weld mismatch and crack locations on fracture behavior, single edge notch under tension (SE(T)) specimens and girth welded pipes under bending containing circumferential cracks were studied by means of finite elements simulations. Different weld widths and locations of cracks over the weld are considered. A study of the opening stresses ahead the crack tip developed in mismatched SE(T) specimens and cracked pipes allows the determination of the most critical combination of weld width and crack location in terms of applied J-integral and crack tip constraint level.

This content is only available via PDF.
You do not currently have access to this content.