Stress corrosion cracking (SCC) is a common failure in stainless steel and nickel based alloys in high-temperature oxygenated aqueous systems. Because the propagating mode and morphology is particular at the SCC tip, it is necessary to investigate and understand in detail the mechanical state close to the SCC tip for improving the prediction accuracy of SCC growth rate in stainless steel and nickel based alloys in the nuclear pressure vessels and piping. By using a sub-model technique in commercial finite element analysis code, the meso-scale stress and strain field in the SCC tip constituted by the oxide film and base metal is simulated and analyzed in this study. And reasonable and operational mechanical parameters in the prediction method of SCC growth rate based on the slip-oxidation model are also discussed. The results of the investigation provide a new insight into the quantitative prediction of SCC growth rate in nuclear structural materials in high temperature water environments.

This content is only available via PDF.
You do not currently have access to this content.