Fitness-for-service assessment of pressure vessels and piping often involves the evaluation of existing or potential crack-like flaws to guard against fracture or leaks that could be caused by the presence of such flaws. This paper presents an inelastic fracture mechanics model that has been developed to evaluate longitudinal surface cracks in pipelines, piping and pressure vessels subjected to internal pressure loading. The model uses the J-integral parameter to predict toughness-dependent failure and an effective flaw concept to predict flow-strength dependent failure. The concepts of the model are reviewed. Then, the model is used to evaluate the results of in-service failures and full-scale burst testing of steel pipe and pressure vessel samples. Application of the model to remaining life assessment based on inspection data and hydrostatic testing results is illustrated. Stress-corrosion cracking (SCC) and fatigue are considered as possible crack-growth mechanisms. Examples of typical remaining crack-growth life calculations are presented using both deterministic and probabilistic methods. The benefits of each method are discussed. Finally, planned future additions to the model are presented.

This content is only available via PDF.
You do not currently have access to this content.