This paper describes numerical and experimental investigations on transferability of material properties obtained by testing of small scale specimens to a real component. The presented study is related to the experimental and analytical work performed on Mock-up3, which is one of three unique large scale Mock-ups tested within the European project STYLE. Mock-up3 is foreseen to investigate transferability of material data, in particular fracture mechanics properties. An important part of this work is to study constraint effects on different small scale specimens and to compare their fracture behaviour with the fracture behaviour of a large scale (component like) structure. The Mock-Up3 is an original part of a surge line made of low alloy steel 20 MnMoNi 5 5 (which corresponds to SA 508 Grade 3, Cl. 1). The goal of the test is to introduce stable crack growth of an inner surface flaw until a break through the wall occurs. To design such a test reliable fracture mechanics material properties must be available. Usually, these material data are obtained by testing small specimens, which are subsequently used for the assessment of a large scale structure (component). This is being done under the assumption that these “small scale” material properties are fully transferable to “large scale” components. It is assumed that crack initiation in the ductile tearing regime is rather independent of the crack shape, a/W ratio, loading condition or size of the specimen (constraint effects). In order to check the aforementioned assumption and to improve understanding of the physical process leading to failure of cracked components comprehensive experimental and analytical work is being undertaken in STYLE. This paper summarizes Up-To-Date available results, which have been achieved during the first 15 months of the project.

This content is only available via PDF.
You do not currently have access to this content.