Nickel alloys with high chromium content provide optimum resistant to stress corrosion cracking for service in the reactor coolant system of commercial nuclear power plants. High chromium nickel-base alloys however present many challenges, such as less than ideal weldability and susceptibility to solidification cracking or solid-state cracking depending on welding conditions and dilution effects with dissimilar metals. Moreover, the presence of large solidification grains, typical of nickel alloy weld metals, makes ultrasonic examination of the weldment difficult. Magnetic stirring of the nickel alloy weld pool has the potential to address these challenges and improve joining, overlay welding, cladding, and repair of critical components in commercial nuclear power plants. This study evaluates use of magnetic arc stirring to modify weld pool solidification conditions in order to promote a fine solidification grain structure in nickel alloy welds.

This content is only available via PDF.
You do not currently have access to this content.