During fracture toughness testing of SEN(B) specimens, an important assumption is that the test specimen is highly constrained. This assumption is ensured by the testing of a deeply cracked specimen, with in-plane and out-of-plane dimensions that are sufficient to guarantee an appropriate level of crack tip stress triaxiality. This condition guarantees that high-constraint fracture toughness values are derived, conservative for use in standard fracture mechanics assessments. In reality, many components have small in-plane or out-of-plane dimensions. It is considered that this could cause a reduction in crack tip constraint of a sufficient amount to increase the effective fracture toughness of the components. However, there is currently limited understanding as to the magnitude of the benefits that could be claimed. Finite element analysis of various thin-width SEN(B) specimens has been undertaken. The knowledge gained can be used to develop fracture mechanics methodology for the testing of thin-width specimens and the subsequent derivation of appropriate toughness values.

This content is only available via PDF.
You do not currently have access to this content.