In conventional fracture mechanics assessments, there is often an inadequate treatment of in-plane constraint effects on the apparent toughness of structural components, leading to significant conservatism. Modifications to the Master Curve method, to account for these effects, have previously been suggested. A study of these proposed modifications has identified that less conservative toughness estimates could be made from the analysis of fracture mechanics test specimens. An approach has been developed for allowing a comparison of a variation of fracture toughness values throughout a component, to a variation of the localised effective driving force. Cracked-body finite element analysis has been used to assess fracture test specimens with varying levels of in-plane constraint, to provide fracture mechanics data for use with the approach that has been developed.

This content is only available via PDF.
You do not currently have access to this content.