Thermal embrittlement of cast austenitic stainless steel piping is of growing concern as nuclear power plants age. The difficulty of inspecting these components adds to the concerns regarding their reliability, and an added concern is the presence of known defects introduced during the casting fabrication process. The possible presence of defects and difficulty of inspection complicate the development of programs to manage the risk contributed by these embrittled components. Much work has been done in the past to characterize changes in tensile properties and fracture toughness as functions of time, temperature, composition, and delta ferrite content, but this work has shown a great deal of scatter in relationships between the important variables. The scatter in material correlations, difficulty of inspection and presence of initial defects calls for a probabilistic approach to the problem. The purpose of this study is to describe a probabilistic fracture mechanics analysis of the maximum allowable flaw sizes in cast austenitic stainless steel piping in commercial power reactors. Attention is focused on fully embrittled CF8M material, and the probability of failure for a given crack size, load and composition is predicted considering scatter in tensile properties and fracture toughness (fracture toughness is expressed as a crack growth resistance relation in terms of J-Δa). Random loads can also be included in the analysis, with results generated by Monte Carlo simulation. This paper presents preliminary results for CF8M to demonstrate the sensitivity of key input variables. The outcome of this study is the flaw sizes (length and depth) that will fail with a given probability when a given load is applied.

This content is only available via PDF.
You do not currently have access to this content.