The small punch testing (SPT) technique has been proposed for use in determining the creep properties of materials for which only a very small volume of material is available. A draft code of practice on SPT has been produced. However it is not, as yet, generally accepted that the data obtained from small punch tests can be directly related to those which would be obtained from conventional uniaxial creep tests. For this reason, the development of techniques suitable for the interpretation of SPT data has become very important. In this paper, a set of uniaxial creep test data has been characterised in such a way as to gain an improved understanding of the correlation between the data from small punch tests and corresponding uniaxial creep tests. Finite element (FE) analyses of small punch creep tests, using a damage mechanics based creep model, have been performed. The effect of large deformation on the determination of material properties for a creep damage model, has been investigated to take into account the large deformation nature of small punch tests. An equivalent stress, σeq, proposed by the draft code, was used to relate the SPT results to the corresponding uniaxial creep test results. A preliminary assessment of the use of small punch test results, in determining creep properties, has been presented, which includes comparisons of the failure life and equivalent minimum strain rate results obtained from SPTs with the corresponding uniaxial creep test data. Future work related to the interpretation of SPT is briefly addressed.

This content is only available via PDF.
You do not currently have access to this content.