Acoustic resonance may occur in heat exchangers such as gas heaters or boilers which contain tube bundles. This resonance is classified in self-excited oscillation, and feedback effect in vortex shedding and sound field plays important role. The purpose of this study is to develop a modeling method of the resonance level dependence of vortex shedding synchronization because this is the most essential part of critical flow velocity prediction. The level of synchronization is expressed by a coherence function between vortex shedding in any two locations in the tube bundle. Here, we introduce the wake oscillator model of vortex shedding, and based on this model, a simple method to estimate the resonance level dependence of the coherence function is proposed. In this method, the relationship of vortex shedding and the sound field in an arbitrary tube is expressed by a statistical model where the effect of resonance on the wake-oscillator is expressed by the width of the fluctuation range of phase between wake-oscillator and acoustic particle velocity. From this model, the resonance level dependence of the coherence function is derived in simple form. This method gives the result that when the resonance level increases, the synchronization level in the tube bundles also increases, which seems to be a reasonable conclusion. The results of experimental verification showed the validity of the proposed modeling method.

This content is only available via PDF.
You do not currently have access to this content.