Failure in piping due to acoustic induced fatigue can be considered catastrophic as it could happen only after a few minutes of operation. Acoustic induced fatigue occurs mainly in gas piping systems with high velocity where high energy is dissipated through pressure reducing stations and pipe branch connections. It usually results in pipe through wall longitudinal cracks, pipe detachment from saddle supports and complete shear off of branch connections. There are existing design criteria to avoid acoustic induced fatigue based on comparison of generated power level to an acceptable power level. This criterion is normally used for the design of pressure relief and flare piping where high gas velocity exceeding 50% of the speed of sound (i.e.0.5 Mach) is expected. However, acoustic induced fatigue has been experienced in systems due to intermittent operations. Two case studies are presented in this paper. The first one is during a steam-out operation to clean a newly constructed steam header. During the cleaning operation, an orifice plate was used to control the flow in the steam header. Several pipe vents and drains failed due to fatigue in less than 1 hour. The second case is for drainage of compressed natural gas during process upset condition. Because of the high level buildup in the liquefied gas separator vessel, the drain valve was opened to release the pressurized liquefied gas to the relief system to reduce the level buildup. Wall cracks and several pipe support detachments were found in the system after the upset condition. This paper presents the engineering analysis and material failure analysis conducted to find the root causes of the failures. Moreover, it highlights the recommendations and lessons learned from these two failures.
Skip Nav Destination
ASME 2011 Pressure Vessels and Piping Conference
July 17–21, 2011
Baltimore, Maryland, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-4454-0
PROCEEDINGS PAPER
The Danger of Piping Failure due to Acoustic Induced Fatigue in Infrequent Operations: Two Case Studies
Husain Mohammed Al-Muslim,
Husain Mohammed Al-Muslim
Saudi Aramco, Dhahran, Saudi Arabia
Search for other works by this author on:
Nadhir Ibrahim Al-Nasri,
Nadhir Ibrahim Al-Nasri
Saudi Aramco, Dhahran, Saudi Arabia
Search for other works by this author on:
Mohammad Y. Al-Hashem
Mohammad Y. Al-Hashem
Saudi Aramco, Dhahran, Saudi Arabia
Search for other works by this author on:
Husain Mohammed Al-Muslim
Saudi Aramco, Dhahran, Saudi Arabia
Nadhir Ibrahim Al-Nasri
Saudi Aramco, Dhahran, Saudi Arabia
Mohammad Y. Al-Hashem
Saudi Aramco, Dhahran, Saudi Arabia
Paper No:
PVP2011-57133, pp. 123-128; 6 pages
Published Online:
May 21, 2012
Citation
Al-Muslim, HM, Al-Nasri, NI, & Al-Hashem, MY. "The Danger of Piping Failure due to Acoustic Induced Fatigue in Infrequent Operations: Two Case Studies." Proceedings of the ASME 2011 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction. Baltimore, Maryland, USA. July 17–21, 2011. pp. 123-128. ASME. https://doi.org/10.1115/PVP2011-57133
Download citation file:
25
Views
Related Proceedings Papers
Related Articles
The Danger of Piping Failure Due to Acoustic-Induced Fatigue in Infrequent Operations: Two Case Studies
J. Pressure Vessel Technol (December,2013)
A Reliability-Based Approach for Low-Cycle Fatigue Design of Class 2 and 3 Nuclear Piping
J. Pressure Vessel Technol (October,2010)
Nondestructive Evaluation of FRP Design Criteria With Primary Consideration to Fatigue Loading
J. Pressure Vessel Technol (May,2004)
Related Chapters
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition
Occlusion Identification and Relief within Branched Structures
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling