The paper provides details about buckling tests on six steel cones and the corresponding numerical estimates of failure load (asymmetric bifurcation and/or collapse). Test models were machined from 250 mm billet. The wall thickness was 2 mm, small-end radius was 74.0 mm and the large radius end was 100 mm. The semi-cone angle was 14 deg. Cones had substantial, and integral top and bottom flanges. Experimental failure loads were obtained for: (i) the first two cones subjected to axial compression, (ii) subsequent two cones subjected to external pressure, and (iii) the remaining two models subjected to combined action of external pressure and axial compression. The magnitude of test pressure was about 5 MPa, and the axial failure load was approximately 230 kN. Good repeatability of experimental failure loads was obtained. Numerical estimates of failure loads were obtained for elastic perfectly plastic, engineering stress-strain, and true stress–true strain modelling of steel. Apart from axisymmetric modelling of shells, true geometry with true wall thickness distribution was adopted in calculations. Some of the numerical estimates of buckling loads are close to test data but other are not. The reasons for these discrepancies are highlighted in the paper.

This content is only available via PDF.
You do not currently have access to this content.