US Nuclear Regulatory Commission (USNRC) Standard Review Plan (SRP) 3.6.3, describes the current methodology for leak-before-break (LBB) piping safety assessment. Specifically, it describes a deterministic assessment procedure that can be used to demonstrate compliance with the 10CFR50 Appendix-A, General Design Criterion 4 (GDC-4) requirement that the primary system pressure piping exhibit an extremely low probability of rupture. However, SRP 3.6.3 does not permit assessment of piping systems with active degradation mechanisms, even though it is known that primary water stress corrosion cracking (PWSCC) has occurred in systems that have been granted LBB exemptions to remove pipe-whip restraints. To address this need, a program is being conducted with the long-term goal of developing a probabilistic assessment tool that can be used to directly demonstrate compliance with 10CFR50 Appendix–A, GDC-4, a tool that would account for the effects of both active degradation mechanisms and the mitigation activities that are being undertaken to address this degradation. This program has been termed “xLPR” as its goal is to demonstrate an eXtremely Low Probability of Rupture in pressure boundary piping systems. This methodology augments current LBB assessment models (leak rate and crack stability models) through the addition of best estimate models describing the initiation and propagation of flaws due to the various degradation mechanisms (fatigue, PWSCC, intergranular stress corrosion cracking (IGSCC), etc.), inspection models, and mechanical and chemical mitigation/remediation models that describe changes in stress state, pipe material and environment caused by mitigation/remediation efforts. Models currently used in LBB assessment will be updated, or replaced, with best estimate, probabilistic models, including those for leak rate and crack stability assessment. All models should account for the full distribution of input variables (where known) in order to account for both epistemic and aleatory uncertainties in as detailed a manner as feasible. This paper summarizes the structure and current activities of the Modeling Task Group within the framework of the overall xLPR Project, and the methodology used to select and develop the models for the xLPR Pilot Study. Preliminary information on the various models chosen for the Pilot Study, and how they are linked within the structure of the overall xLPR probabilistic code, is also provided.
Skip Nav Destination
ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
July 18–22, 2010
Bellevue, Washington, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-49255
PROCEEDINGS PAPER
Models for Use in Probabilistic Pipe Rupture Assessment Code Development
Marjorie A. Erickson,
Marjorie A. Erickson
Phoenix Engineering Associates, Inc., Davidsonville, MD
Search for other works by this author on:
Mark T. Kirk,
Mark T. Kirk
U.S. Nuclear Regulatory Commission, Rockville, MD
Search for other works by this author on:
Howard J. Rathbun
Howard J. Rathbun
U.S. Nuclear Regulatory Commission, Rockville, MD
Search for other works by this author on:
Marjorie A. Erickson
Phoenix Engineering Associates, Inc., Davidsonville, MD
Mark T. Kirk
U.S. Nuclear Regulatory Commission, Rockville, MD
Howard J. Rathbun
U.S. Nuclear Regulatory Commission, Rockville, MD
Paper No:
PVP2010-25681, pp. 621-628; 8 pages
Published Online:
January 10, 2011
Citation
Erickson, MA, Kirk, MT, & Rathbun, HJ. "Models for Use in Probabilistic Pipe Rupture Assessment Code Development." Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASME 2010 Pressure Vessels and Piping Conference: Volume 6, Parts A and B. Bellevue, Washington, USA. July 18–22, 2010. pp. 621-628. ASME. https://doi.org/10.1115/PVP2010-25681
Download citation file:
27
Views
Related Proceedings Papers
Related Articles
A Risk-Informed Approach to Leak-Before-Break Assessment of Pressure Tubes in CANDU Reactors
J. Pressure Vessel Technol (April,2010)
Evaluation of the Growth and Stability of Stress Corrosion Cracks in Sensitized Austenitic Piping
J. Pressure Vessel Technol (May,1984)
Related Chapters
Insights and Results of the Shutdown PSA for a German SWR 69 Type Reactor (PSAM-0028)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Nonmetallic Pressure Piping System Components Part A: Experience With Nonmetallic Materials in Structural/Pressure Boundary Applications
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes
Nonmetallic Pressure Piping System Components 1 Part A: Experience With Nonmetallic Materials in Structural/Pressure Boundary Applications
Companion Guide to the ASME Boiler and Pressure Vessel Codes, Volume 1, Fifth Edition