This paper focused on long-term creep modeling for describing total creep curves of up to rupture for modified 9Cr-1Mo steel (G91). Creep data was obtained by a series of constant-load creep tests at 600°C. Three modified constitutive equations of modified power-law method (MPM), modified theta method (MTM) and modified omega method (MOM), described as a sum of a decaying primary creep and an accelerating tertiary creep, were proposed. A nonlinear least square fitting (NLSF) analysis was carried out on the basis of the creep data so that they provide the best fit to experimental data in optimizing parameter constants of the individual equation. Results of the NLSF analysis showed that in the lower stress regions of 160MPa (σ/σys<0.65), the MTM matched well with the experimental creep data compared with the MPM and MOM, but that in the higher stress regions of 160MPa (σ/σy > 0.65), the MPM revealed better agreement than the MTM and MOM. It was found that the MTM was superior in the modeling of long-term creep curves to the MPM and MOM. Long-term creep curves for the G91 steel were numerically modeled and its creep life was predicted by the MTM.

This content is only available via PDF.
You do not currently have access to this content.