This paper provides the virtual simulation method for creep crack growth test, based on finite element (FE) analyses with damage mechanics. Creep tests of smooth bars are used to quantify the constants of creep constitutive equation. The reduction of area resulting from creep tests of smooth and notched bar is adopted as a measure of creep ductility under multiaxial stress conditions. The creep ductility exhaustion concept is adopted for calculating creep damage, which is defined as the ratio of creep strain to the multiaxial creep ductility. To simulate crack propagation, fully damaged elements are forced to have nearly zero stresses using user-defined subroutine UHARD in the general-purpose FE code, ABAQUS. The results from 2D or 3D FE analyses are compared with experimental data of creep crack growth. It is shown that the predictions obtained from this new method are in good agreement with experimental data.

This content is only available via PDF.
You do not currently have access to this content.