In this paper finite element simulation and neutron diffraction measurements are employed to assess the residual stresses in an AISI 316LN austenitic stainless steel plate containing a three-pass finite length weld in a machined slot. This work forms a part of the Task Group 4 (TG4) measurement and simulation round robin being undertaken by the NeT European network. Finite element (FE) simulations were carried out using the FEAT-WMT and ABAQUS commercial finite element packages. The welding process was modelled both using a 3D moving-heat source (MHS) which is spatially correct but computationally expensive and using a simplified “block-dumped” methodology (BD) in which an entire weld bead is deposited simultaneously. This does not reproduce the effects of welding torch movement, but is computationally less expensive. The mechanical analyses used combined isotropic-kinematic material constitutive models with a two-stage annealing functionality to remove plastic strain accumulated at high temperatures. The finite element predictions of weld residual stress are compared with neutron diffraction measurements obtained on the KOWARI diffractometer at the OPAL reactor at ANSTO.

This content is only available via PDF.
You do not currently have access to this content.