A series of experiments, including constant amplitude low-cycle fatigue tests, post-fatigue tension to failure tests, LOP (TEM) observations, and SEM examinations, were performed at room-temperature to investigate the variation of the static mechanical properties, microstructures and fracture behavior of 304 austenitic stainless steel during low-cycle fatigue. The changing characteristics of various static mechanical property parameters, including the strength parameters, stiffness parameter, ductility parameters and strain hardening exponent during fatigue damage process of the stainless steel were obtained experimentally and their micromechanisms were discussed by analyzing both the deformation microstructures and the fracture features of the cyclically pre-deformed specimens. It was shown that the austenite / martensite transformation resulting from the accumulation of cyclic plastic strain was mostly responsible for the variation in the strength, ductility and strain hardening ability of the stainless steel during fatigue damage process. The depletion of the inherent ductility in the material due to fatigue damage evolution led to the ductile-to-brittle transition (DBT) in the fracture modes. Based on the macro- / micro-experiments regarding the exhaustion of the ductility during fatigue damage, the ductility parameter was suggested as a damage indicating parameter for the present stainless steel in further studying the fatigue damage mechanics model as well as the residual fatigue life prediction method.
Skip Nav Destination
ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference
July 18–22, 2010
Bellevue, Washington, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-4922-4
PROCEEDINGS PAPER
Variation in Mechanical Properties, Microstructures and Fracture Behavior of 304 Stainless Steel During Low-Cycle Fatigue Available to Purchase
Duyi Ye,
Duyi Ye
Zhejiang University, Hangzhou, Zhejiang, China
Search for other works by this author on:
Yuandong Xu,
Yuandong Xu
Zhejiang University, Hangzhou, Zhejiang, China
Search for other works by this author on:
Lei Xiao,
Lei Xiao
Zhejiang University, Hangzhou, Zhejiang, China
Search for other works by this author on:
Haibo Cha
Haibo Cha
Zhejiang University, Hangzhou, Zhejiang, China
Search for other works by this author on:
Duyi Ye
Zhejiang University, Hangzhou, Zhejiang, China
Yuandong Xu
Zhejiang University, Hangzhou, Zhejiang, China
Lei Xiao
Zhejiang University, Hangzhou, Zhejiang, China
Haibo Cha
Zhejiang University, Hangzhou, Zhejiang, China
Paper No:
PVP2010-25520, pp. 651-661; 11 pages
Published Online:
January 10, 2011
Citation
Ye, D, Xu, Y, Xiao, L, & Cha, H. "Variation in Mechanical Properties, Microstructures and Fracture Behavior of 304 Stainless Steel During Low-Cycle Fatigue." Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASME 2010 Pressure Vessels and Piping Conference: Volume 3. Bellevue, Washington, USA. July 18–22, 2010. pp. 651-661. ASME. https://doi.org/10.1115/PVP2010-25520
Download citation file:
15
Views
Related Proceedings Papers
Related Articles
Microstructural Development and Cracking Behavior of AISI 304 Stainless Steel Tested in Time Dependent Fatigue Modes
J. Eng. Mater. Technol (January,1983)
Low Cycle Fatigue Damage in Pressure-Vessel Materials
J. Basic Eng (December,1963)
Low-Velocity Impact Response Characterization of a Hybrid Titanium Composite Laminate
J. Eng. Mater. Technol (April,2007)
Related Chapters
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Micromechanisms of Low-Cycle Fatigue in Nickel-Based Superalloys at Elevated Temperatures
Fatigue Mechanisms
Understanding the Problem
Design and Application of the Worm Gear