The internals in the deaerators of a refinery plant were reported to have experienced a series of failures since their installation in 1985. These failures included development of cracks in the floor plates, damage of supports and breakage of fillet welds. Two possible root causes were initially identified; thermal stresses due to transient conditions and flow induced vibration. The former cause was classified as unlikely since the deaerators were always operating on steady-state conditions. No cyclic operating conditions were imposed on these deaerators. Vibrations however posed as the most likely root cause for the series of failures. The refinery plant inspectors reported that vibrations on the deaerators, although have not been measured, could be physically felt. These vibrations appear to be continuous and increase linearly with load. A finite element analysis was performed to determine the natural frequency of the deaerators. Mode shapes predicted from this calculation show that vibrations could have caused the failures of the internals. Furthermore, the lowest natural frequency of the deaerators appeared to fall within the actual vibration frequency on site (∼20 Hz). Although not confirmed, it is highly suspected that the vibration was excited by the flow (low pressure steam). Several repair options were explored to overcome this problem. These options were concentrated in increasing the stiffness of the steam inlet pipe and the deaerator floor. Finite element assessments demonstrated that the current flexible deaerator floor was the reason for the low natural frequency. An option of introducing reinforcement strips to the bottom side of the floor was identified as the best option to increase the natural frequency of the deaerator and this is expected to overcome the vibration problem. Only one vessel was assessed but the results apply to the other vessels since they are similar in design.

This content is only available via PDF.
You do not currently have access to this content.