Bi-material systems in which two dissimilar materials are adhesively joined by a thin adhesive interlayer have been widely used in a variety of modern industries and engineering structures. There are two fundamental issues that need to be adequately addressed: (1) Fracture of bonded bi-materials is mixed mode: Mode-I (pure peel) and Mode-II (pure shear). Fracture test implementation of bi-material systems with the traditional Mode-I methods will induce a noticeable mixed mode fracture due to the disrupted symmetry by the bi-material configuration; (2) The popular cohesive zone models (CZMs) for accurate fracture simulations require more than a single parameter (toughness) as is the case in the traditional linear elastic fracture mechanics (LEFM). Thus, J-integral is highly preferred. It can not only capture more accurate toughness value by considering the root rotation effect, but also facilitate the experimental characterizations of the interfacial cohesive laws, which naturally include all required parameters by CZMs. Motivated by these two important issues, a novel idea is proposed in the present work to realize and characterize the pure Mode-I nonlinear interface fracture between bonded dissimilar materials: Despite the approximation with the elementary beam theories, the accuracy is validated by numerical simulations. The proposed approach may be considered as a promising candidate for the future standard Mode-I test method of adhesively bonded dissimilar materials due to its obvious simplicity and accuracy.

This content is only available via PDF.
You do not currently have access to this content.