This paper proposes a dynamic buckling analysis method which can accurately simulate the buckling behavior of cylindrical water storage tanks during an earthquake. The proposed method takes into account the behavior of oval-type vibration as well as beam-type vibration, which are coupled vibrations between the shell structure of the tank and the water stored in the tank. In the proposed method, both the tank and the stored water are three-dimensionally modeled by finite elements and time history analysis is conducted. Moreover, coupled analysis between the fluid and structure and large deformation analysis to the shell structure of the tank are also considered. The analytical results by the proposed method agreed well with those of experiments regarding occurrence of oval-type vibration, mode of buckling and buckling load. The method can accurately simulate the seismic response including the coupled vibrations and the process of damage such as buckling of the cylindrical water storage tank during an earthquake. In conclusion, the proposed dynamic buckling analysis method can quantitatively evaluate the seismic performance of water storage tanks such as seismic safety margin.

This content is only available via PDF.
You do not currently have access to this content.