Flow-acceleration corrosion (FAC) is a degradation mechanism that impacts carbon steel piping components and equipment under conditions often found in both nuclear and fossil power plants. To deal with this type of degradation, many utilities have instituted inspection programs designed to discover dangerous situations well before failures occur. Inspections to determine FAC damage are normally done using the Ultrasonic Technique (UT) although other methods are also used. For large bore components, the most commonly used inspection approach is gridded UT measurements. Experience has shown that the amount of degradation that typically occurs between inspections is comparable to the uncertainty of the UT measurements. Thus, the accurate determination of the actual wear rates is difficult as the measurement uncertainties tend to cause over-stating the actual degradation. To deal with this problem, EPRI has developed a number of evaluation approaches for interpreting data from one inspection, from two sets of inspections and from more than two sets of inspections. The application of these methods to inspection data will be discussed demonstrating the performance of the different approaches. The impact of the error propagation on the accuracy of these methods and recommendations for different circumstances will be presented.

This content is only available via PDF.
You do not currently have access to this content.