Fatigue crack growth rates (da/dN) in up to 90MPa high-pressure gaseous hydrogen environments of quenched and tempered low alloy Cr-Mo steel: JIS-SCM435 with ultimate tensile strength level of 950MPa were measured utilizing a cycle, ranging from 0.3sec from 1000sec long with a road ratio R = 0.1. The longer cycle time tests (15sec to 1000sec per cycle) were conducted utilizing internal pressure test apparatus by utilizing cylinder (= CY) specimens, while shorter cycle (0.3sec to 25sec per cycle) tests were performed utilizing fatigue test machine using compact tension (= C(T)) specimens. Crack depth of CY specimens were measured by Time Of Flight Diffraction (TOFD) technique and the crack length of C(T) specimens were measured by compliance technique. Both C(T) and CY specimen showed accelerated sub-critical crack growth in gaseous hydrogen compared that in air or inert gas atmosphere. The effect of load ratio was also evaluated.

This content is only available via PDF.
You do not currently have access to this content.