Equipment that is exposed to severe operational pressure and thermal cycling, like coke drums, usually suffer fatigue. As a result, equipment of this sort develop defects such as cracking in the circumferential welds. Operating companies are faced with the challenges of deciding what is the best way to prevent these defects, as well as determining how long they could operate if a defect is discovered. This paper discusses a methodology for fracture mechanics testing of coke drum welds, and calculations of the critical crack size. Representative samples are taken from production materials, and are welded employing production welding procedures. The material of construction is 1.25Cr-0.5Mo low alloy steel conforming to ASME SA-387 Gr 11 Class 2 in the normalized and tempered condition (N&T). Samples from three welding procedures (WPS) are tested: one for production, one for a repair with heat treatment, and one for repair without heat treatment. The position and orientation of test specimen are chosen based on previous surveys and operational experience on similar vessels that exhibited cracks during service. Fracture mechanics toughness testing is performed. Crack finite element analysis (FEA) model is used to determine the path-independed JI-integral driving force. Methodology for the determination of critical crack size is developed.

This content is only available via PDF.
You do not currently have access to this content.