A Coupled Discrete Element - Continuous Fluid Method is developed, which allows the numerical simulation of the behaviour of pneumatic conveyed granular media. While the fluid is simulated by computational fluid dynamics, the soft-sphere discrete element approach is used for the particle system. A “four-way coupling” is implemented to account for phase interaction on both sides and for the collisions among particles and with the pipe walls. The purpose of this work is to show the applicability of the presented simulation model to dense pneumatic conveying systems. Unfortunately, only few complete experimental data are available in this field. In this work a pneumatic conveying system for dense phase regime with a vertical pipe of 2 m height and a diameter of 50 mm is investigated. Periodic conditions are applied to both phases, the fluid and the particle system. The particles, which leave the pipe at one end, are inserted back at the other end of the pipe, so that a much larger simulation domain is represented. After an initial set up and some intermediate time steps a stable mode is reached and one single plug forms, which is then investigated in detail. The pressure distribution along the plug which coincides with the porosity distribution, the length of the plug and its velocity are important parameters which are examined and compared to experimental investigations. Variations of the conveying air velocity and their influence are also considered.

This content is only available via PDF.
You do not currently have access to this content.