The time- and event-driven discrete element methods are more and more applied to realistic industrial scale applications. However, they are still computational very demanding. Realistic modeling is often limited or even impeded by the cost of the computational resources required. In this paper the time-driven and event-driven discrete element methods are reviewed addressing especially the available algorithms. Their options for simultaneously modeling an interstitial fluid are discussed. A potential extension of the time-driven method currently under development functioning as a link between event- and time-driven methods is suggested and shortly addressed.

This content is only available via PDF.
You do not currently have access to this content.