Turbulent-induced vibrations of fuel assemblies in PWR power plants is a potential cause of deformation and of fretting wear damage. Because of the complexity of a 17 × 17 rod assembly with a length exceeding four meters, the prediction of its vibrations is still a challenging task as regards computer simulation. The Large Eddy Simulation (LES) technique provides the instantaneous pressure and velocity fields inside the fluid as well as the shear stress and the pressure along the walls. EDF inhouse open source CFD tool Code_Saturne is used in the present work with a 8 million cells grid to compute the flow along four sub-channels all around one fuel rod by taking into account only one mixing grid. The computations are carried out on 1024 processors of a BlueGene/L supercomputer. Hence, the overall turbulent excitation upon one single rod is estimated numerically, taking into account the specific influence of the deflectors. As regards the structure, using the forces provided by the CFD computation, a linear model of the rod based on Euler beam theory and simplified boundary conditions is proposed. The first natural modes of the structure are hence obtained, and the modal forces are estimated using the standard techniques of modal projection and joint acceptance. Estimations of the vibration amplitude of rod induced by the local flow are finally obtained, using simplified expressions of the added mass and of the damping coefficient. The amplitudes are significant for the first mode essentially, and reach a value of the order of the μm, with a maximum around 6 μm.

This content is only available via PDF.
You do not currently have access to this content.