The empirical investigation of the spatial distribution of resonant acoustic sources around a tandem cylinder configuration subject to cross flow in a duct and an imposed transverse acoustic wave is described. The imposed wave induced acoustic “lock-in” and the vortex shedding frequency from the cylinders became entrained to the frequency of the imposed wave near acoustic-Strouhal coincidence. Howe’s aeroacoustic theory was used to couple an acoustic field to a hydrodynamic flow field and the spatial distribution of the time-resolved acoustic power and net-acoustic energy throughout a complete acoustic wave cycle at two resonant conditions were calculated. The first resonant condition occurred at a low flow velocity before acoustic-Strouhal coincidence, whilst the second occurred at a higher flow velocity just after acoustic-Strouhal coincidence. The acoustic field was analysed using finite element analysis combined with microphone pressure measurements whilst the hydrodynamic flow field was extracted using particle image velocimetry from a field of view concentrated around the cylinders and roughly three diameters downstream of them. For both resonant conditions, the dominant individual sources were found to lie in the shear layers of the gap region between the cylinders, however, stronger individual sinks were found to be located there also. Thus, for the amplitude of the applied sound wave and for the available field of view, the gap shear layer region contributed an overall acoustic sink whilst the wake contributed an overall acoustic source.
Skip Nav Destination
ASME 2009 Pressure Vessels and Piping Conference
July 26–30, 2009
Prague, Czech Republic
Conference Sponsors:
- Pressure Vessels and Piping
ISBN:
978-0-7918-4367-3
PROCEEDINGS PAPER
Experimental Investigation of the Aeroacoustic Sources in a Tandem Cylinder Configuration
Shane Leslie Finnegan,
Shane Leslie Finnegan
Trinity College Dublin, Dublin, Ireland
Search for other works by this author on:
Craig Meskell,
Craig Meskell
Trinity College Dublin, Dublin, Ireland
Search for other works by this author on:
Samir Ziada
Samir Ziada
McMaster University, Hamilton, ON, Canada
Search for other works by this author on:
Shane Leslie Finnegan
Trinity College Dublin, Dublin, Ireland
Craig Meskell
Trinity College Dublin, Dublin, Ireland
Samir Ziada
McMaster University, Hamilton, ON, Canada
Paper No:
PVP2009-77757, pp. 399-408; 10 pages
Published Online:
July 9, 2010
Citation
Finnegan, SL, Meskell, C, & Ziada, S. "Experimental Investigation of the Aeroacoustic Sources in a Tandem Cylinder Configuration." Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction. Prague, Czech Republic. July 26–30, 2009. pp. 399-408. ASME. https://doi.org/10.1115/PVP2009-77757
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Experimental Investigation of the Acoustic Power Around Two Tandem Cylinders
J. Pressure Vessel Technol (August,2010)
Near-Wake Characteristics and Acoustic Resonance Excitation of Crimped Spirally Finned Cylinders in Cross-Flow
J. Pressure Vessel Technol (October,2018)
Lower Mode Response of Circular Cylinders in Cross-Flow
J. Fluids Eng (June,1980)
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Occlusion Identification and Relief within Branched Structures
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling
Random Turbulence Excitation in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment