This study investigates the unsteady flow and the resulting fluidelastic forces in a tube bundle. Numerical simulations are presented for normal triangle tube arrays with pitch-to-diameter (P/d) ratios of 1.35, 1.75, and 2.5 utilizing a 2-dimensional model. In this model a single tube was forced to oscillate within an otherwise rigid array. Fluid forces acting on the oscillating tube and the surrounding tubes were estimated. The predicted forces were utilized to calculate fluid force coefficients for all tubes. The numerical model solves the Reynolds-Average Navier-Stokes (RANS) equations for unsteady turbulent flow, and is cast in an Arbitrary Lagrangian-Eulerian (ALE) form to handle mesh the motion associated with a moving boundary. The fluidelastic instability (FEI) was predicted for both single and fully flexible tube arrays over a mass damping parameter (MDP) range of 0.1 to 200. The effect of the P/d ratio and the Reynolds number on the FEI threshold was investigated in this work.

This content is only available via PDF.
You do not currently have access to this content.