In the present work, the free vibration of thin cylindrical shells with ring support made of functionally graded materials under various symmetrical boundary conditions is presented. Temperature and position dependent material properties are varied linearly through the thickness of the shell. The functionally graded cylindrical shell has ring support which is arbitrarily placed along the shell and imposed a zero lateral deflection. The third order shear deformation theory is employed to formulate the problem. The governing equations of motion are derived using the Hamilton’s principle. Results are presented on the frequency characteristics and influence of the boundary conditions and the locations of the ring support on the natural frequencies. The present analysis is validated by comparing the results with those available in the literature.

This content is only available via PDF.
You do not currently have access to this content.