Recently, we applied criterion of initiation of deformation bands based on bifurcation analysis as a criterion of ductile fracture. Experience shows that this procedure yields realistic results if plastic behavior is described by deformation theory of plasticity, with corresponding stress-strain dependence — especially with transition between strain hardening stages III and IV. But it is generally known that under high stress triaxilities, fracture strain depends strongly on stress triaxiality. If deformation theory of plasticity is suitable for modeling of constitutive properties of polycrystalline metals, it should lead to good results in prediction of cavitation instability as a criterion of ductile fracture under high triaxialities as well. We present prediction of fracture strains for reactor pressure vessel steel, in comparison with experimental results. Criterion of cavitation instability based on deformation theory of plasticity predicts similar dependence of fracture strain on stress triaxiality as the classical Rice-Tracey void growth model does, but, moreover, in contrast to the Rice-Tracey model, it predicts absolute values of critical strains. Finally, important role of deformation theory of plasticity in other areas of material engineering and structural integrity analysis is shortly remembered.

This content is only available via PDF.
You do not currently have access to this content.